We consider the real case and the Lyapunov equation which is slightly different from the one considered in the book.

$$
A W+W A^{T}=H
$$

Suppose $H \geq 0$ and $W>0$. Let λ be a (real/complex) eigenvalue of A and $x^{*} A=\lambda x^{*}$. According to Lemma 2.4.6, we have

$$
\operatorname{Re}(\lambda)=\frac{1}{2} \frac{x^{*} H x}{x^{*} W x}
$$

Therefore, $\operatorname{Re}(\lambda) \geq 0$ and

$$
\boldsymbol{\operatorname { R e }}(\lambda)=0 \Leftrightarrow\left\{\begin{array}{c}
x^{*} \boldsymbol{A}=\lambda x^{*} \\
\boldsymbol{x}^{*} \boldsymbol{H}=0
\end{array}\right.
$$

Suppose $H=B B^{T}$. Then $x^{*} H=0 \Leftrightarrow x^{*} B=0$. Therefore,

$$
\operatorname{Re}(\lambda)=0 \Leftrightarrow\left\{\begin{array}{c}
x^{*} A=\lambda x^{*} \\
x^{*} B=\mathbf{0}
\end{array} \Leftrightarrow x^{*}[A-\lambda I, B]=\mathbf{0}\right.
$$

The last equation actually is the PBH test for controllability!!! So (A, B) is controllable if and only if A is positive stable!

The negative stable case can be proved similarly.

