We just consider the real case where A is real.

$$AW + WA^T = H$$

Now prove if $H \ge 0$ and W > 0, then A is positive semi-stable; i.e., $Re(\lambda) \ge 0$. The key is to analyze the matrix product AW!!!

Not complete proof: (for real eigenvalues and eigenvectors)

Let $\lambda \in \sigma(A)$ and $x^T A = \lambda x^T$ (for the above equation we need the left eigenvector, for the equation in the book, we need the right eigenvector). Now consider $x^T A W x$:

•
$$x^T A W x = \lambda x^T W x$$

•
$$x^{T}AWx = x^{T}\left(\frac{AW+WA^{T}}{2} + \frac{AW-WA^{T}}{2}\right)x = \frac{1}{2}x^{T}Hx$$

Therefore,

$$\lambda x^T W x = \frac{1}{2} x^T H x \implies \lambda = \frac{1}{2} \frac{x^T H x}{x^T W x}$$

As a result, if W>0 and $H \ge 0$, then $\lambda \ge 0$; if H > 0, then $\lambda > 0$; if H < 0, then $\lambda < 0$.

Complete Proof: (for general complex eigenvalues and eigenvectors)

The above proof is not 100% correct because it is applicable merely to the case where λ and x are real. Even if A is real, its eigenvalues and eigenvectors can still be complex! If λ is complex (real), then x is complex (real)!

Let $\lambda \in \sigma(A)$ and $x^*A = \lambda x^*$. Now consider x^*AWx

•
$$x^*AWx = \lambda x^*Wx$$

•
$$x^*AWx = x^*\left(\frac{AW+WA^T}{2} + \frac{AW-WA^T}{2}\right)x = \frac{1}{2}(x^*Hx + x^*Sx)$$

Therefore,

$$\lambda x^* W x = \frac{1}{2} (x^* H x + x^* S x)$$

It must be noted that x^*Sx is not zero in the complex case. In fact, we have

- x^*Sx is pure **imaginary** because $(x^*Sx)^* = -x^*Sx$
- x^*Hx is pure **real** because $(x^*Hx)^* = x^*Hx$

Therefore, the above equation can be split to

$$2Re(\lambda)x^*Wx + 2Im(\lambda)x^*Wx = x^*Hx + x^*Sx \implies \begin{cases} 2Re(\lambda)x^*Wx = x^*Hx \\ 2Im(\lambda)x^*Wx = x^*Sx \end{cases}$$

As a result,

$$Re(\lambda) = \frac{1}{2} \frac{x^* H x}{x^* W x}$$